```
Exercise:

Q 1. Calculate the molar mass of the following:

(i) CH<sub>4</sub> (ii) H<sub>2</sub>O (iii) CO<sub>2</sub>
```

Ans.

(i) CH₄: Molecular mass of CH₄ = Atomic mass of C + 4 x Atomic mass of H = $12 + 4 \times 1$ = 16 u

(ii) H_2O : Molar mass of water H_2O Atomic mass of H = 1Atomic mass of O = 16 $H_2O = 2xH+1xO$ Molar mass of water = 2x1+16 = 18g/mol

(iii) CO_2 : Molecular mass of CO_2 = Atomic mass of C + 2 x Atomic mass of O = 12 + 2 x 16 = 44 u

Q2. Calculate the mass per cent of different elements present in sodium sulphate (Na₂SO₄).

Ans.

Now for Na₂SO₄.

Molar mass of Na₂SO₄

 $= [(2 \times 23.0) + (32.066) + 4(16.00)]$

= 142.066 g

Formula to calculate mass percent of an element

Therefore, mass percent of the sodium element:

$$= \frac{46.0g}{142.066g} \times 100$$

= 32.379
= 32.4%

Mass percent of the sulphur element:

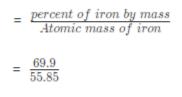
```
= \frac{32.066g}{142.066g} \times 100
= 22.57
= 22.6%
```

 $rac{Mass \ of \ that \ element \ in \ the \ compound}{Molar \ mass \ of \ the \ compound} \ imes \ 100$

Mass percent of the oxygen element:

$$= \frac{64.0g}{142.066g} \times 100$$

= 45.049


= 45.05%

Q3. Determine the empirical formula of an oxide of iron, which has 69.9% iron and 30.1% dioxygen by mass.

Ans.

Given there is an oxide of iron which has 69.9% iron and 30.1% dioxygen by mass:

Relative moles of iron in iron oxide:


```
= 1.25
```

Relative moles of oxygen in iron oxide:

 $=\frac{30.1}{16.00}$

= 1.88

The simplest molar ratio of iron to oxygen:

 $\Rightarrow 1.25: 1.88 \Rightarrow 1: 1.5 \Rightarrow 2: 3$

Therefore, the empirical formula of the iron oxide is Fe_2O_3 .

Q4. Calculate the amount of carbon dioxide that could be produced when
(i) 1 mole of carbon is burnt in air.
(ii) 1 mole of carbon is burnt in 16 g of dioxygen.
(iii) 2 moles of carbon are burnt in 16 g of dioxygen.
Ans.

(i) 1 mole of carbon is burnt in air.

 $C + O_2 \rightarrow CO_2$

1 mole of carbon reacts with 1 mole of O_2 to form one mole of CO_2 .

Amount of CO_2 produced = 44 g

(ii) 1 mole of carbon is burnt in 16 g of O_2 .

1 mole of carbon burnt in 32 grams of O_2 it forms 44 grams of CO_2 .

Therefore, 16 grams of O₂ will form $\frac{44 \times 16}{32}$

= 22 grams of CO_2

(iii) 2 moles of carbon are burnt in 16 g of O₂.

Here again, dioxygen is the limiting reactant. 16g of dioxygen can combine only with 0.5mol of carbon. CO_2 produced again is equal to 22g.

Q5. Calculate the mass of sodium acetate CH_3COONa required to make 500 mL of 0.375 molar aqueous solution. Molar mass of sodium acetate is 82.0245 g mol⁻¹.

Ans.

0.375 M aqueous solution of CH₃COONa

= 1000 mL of solution containing 0.375 moles of CH₃COONa

Therefore, no. of moles of CH₃COONa in 500 mL

$$= \frac{0.375}{1000} \times 500$$

= 0.1875 mole

Molar mass of sodium acetate = 82.0245 g mol⁻¹

Therefore, the mass of CH₃COONa

 $= (82.0245 \ g \ mol^{-1})(0.1875 \ mole)$

```
= 15.38 grams
```

Q6. Calculate the concentration of nitric acid in moles per litre in a sample which has a density, 1.41 g mL⁻¹ and the mass per cent of nitric acid in it being 69%

Ans.

Mass percent of HNO3 in sample is 69 %

Thus, 100 g of HNO₃ contains 69 g of HNO₃ by mass.

Molar mass of HNO₃

= 63g mol⁻¹

Now, no. of moles in 69 g of HNO_3

 $= \frac{69 \ g}{63 \ g \ mol^{-1}}$

= 1.095 mol

Volume of 100g HNO₃ solution

= Mass of solution density of solution

 $= \frac{100g}{1.41g \ mL^{-1}}$

= 70.92mL

= 70.92 x 10⁻³ L

Concentration of HNO₃

 $= \frac{1.095 \text{ mole}}{70.92 \times 10^{-3} L}$

= 15.44mol/L

Therefore,

Concentration of $HNO_3 = 15.44 \text{ mol/L}$

Q7. How much copper can be obtained from 100 g of copper sulphate (CuSO₄)?

Ans.

1 mole of CuSO₄ contains 1 mole of Cu.

Molar mass of CuSO₄

= (63.5) + (32.00) + 4(16.00)

= 63.5 + 32.00 + 64.00

= 159.5 grams

159.5 grams of CuSO₄ contains 63.5 grams of Cu.

grams of CuSO₄ will contain
$$\frac{63.5 \times 100g}{159.5}$$
 of Cu

Therefore, 100 grams of CuSO₄ will co

 $= \frac{63.5 \times 100}{159.5}$

= 39.81 grams

Q8. Determine the molecular formula of an oxide of iron, in which the mass percent of iron and oxygen are 69.9 and 30.1, respectively.

Ans.

Here,

Mass percent of Fe = 69.9%

Mass percent of O = 30.1%

No. of moles of Fe present in oxide

 $= \frac{69.90}{55.85}$

= 1.25

No. of moles of O present in oxide

 $=\frac{30.1}{16.0}$

=1.88

Ratio of Fe to O in oxide,

= 1.25: 1.88

 $=\frac{1.25}{1.25}$: $\frac{1.88}{1.25}$

= 1: 1.5

= 2: 3

Therefore, the empirical formula of oxide is Fe₂O₃

Empirical formula mass of Fe₂O₃

= [2(55.85) + 3(16.00)] g

= 159. 7g

The molar mass of $Fe_2O_3 = 159.69g$

Therefore n = $\frac{Molar mass}{Empirical formula mass} = \frac{159.69 g}{159.7 g}$ = 0.999= 1(approx)

The molecular formula of a compound can be obtained by multiplying n with the empirical formula.

Thus, the empirical of the given oxide is Fe_2O_3 and n is 1.

Therefore, the molecular formula of the oxide is Fe₂O₃

Q9. Calculate the atomic mass (average) of chlorine using the following data:

Percentage Natural Abundance		Molar Mass
³⁵ Cl	75.77	34.9689
³⁷ Cl	24.23	36.9659

Ans.

Fractional Abundance of ${}^{35}CI = 0.7577$ and Molar mass = 34.9689 Fractional Abundance of ${}^{37}CI = 0.2423$ and Molar mass = 36.9659 Average Atomic mass = (0.7577×34.9689) amu + (0.2423×36.9659) = 26.4959 + 8.9568 = 35.4527

Q10. In three moles of ethane (C_2H_6), calculate the following: (i) Number of moles of carbon atoms. (ii) Number of moles of hydrogen atom

(iii) Number of molecules of ethane

Ans.

(i) 1 mole of C_2H_6 contains two moles of C- atoms.

 \therefore No. of moles of C- atoms in 3 moles of C₂H₆.

= 2 x 3

= 6

- (ii) 1 mole of C_2H_6 contains six moles of H- atoms.
- \therefore No. of moles of H- atoms in 3 moles of C₂H₆.
- = 3 x 6
- = 18

(iii) 1 mole of C_2H_6 contains 1 mole of ethane- atoms.

- \therefore No. of molecules in 3 moles of C₂H₆
- = 3 x 6.023 x 10²³

= 18.069 x 10²³

Q11. What is the concentration of sugar ($C_{12}H_{22}O_{11}$) in mol L^{-1} if its 20 g are dissolved in enough water to make a final volume up to 2L?

Ans.

Molarity (M) is as given by,

$$= \frac{Number of moles of solute}{Volume of solution in Litres}$$

$$= \frac{\frac{Mass of sugar}{2 L}}{2 L}$$

$$= \frac{\frac{20 g}{[(12 \times 12) + (1 \times 22) + (11 \times 16)]g]}}{2 L}$$

$$= \frac{\frac{20 g}{342 g}}{2 L}$$

$$= \frac{0.0585 mol}{2 L}$$

= 0.02925 mol L⁻¹

Therefore, Molar concentration = 0.02925 mol L⁻¹

Q12. If the density of methanol is 0.793 kg L^{-1} , what is its volume needed for making 2.5 L of its 0.25 M solution?

Ans.

Molar mass of methanol (CH₃OH)

= 32 gmol⁻¹= 0.032 kgmol⁻¹

molarity of the given solution

$$= rac{W_2inkg}{M_{w_2} imes V_{(sol)}L} = rac{d_{sol}(kgL^{-1})}{Mw_2(kg)}$$

- $= rac{0.793 kg L^{-1}}{0.032 kg mol^{-1}} = 24.78 M$

 $24.78 \times V_1 = 0.25 \times 2.5 L$

or $V_1 = 0.02522L = 25.22mL$

Q13. Pressure is determined as force per unit area of the surface. The SI unit of pressure, pascal is as shown below: $1Pa = 1N m^{-2}$

If mass of air at sea level is 1034 g cm⁻², calculate the pressure in pascal

Ans.

Pressure is the force (i.e., weight) acting per unit area

But weight = mg

: Pressure = Weight per unit area

 $= \frac{1034g \times 9.8ms^{-2}}{cm^2}$ $= \frac{1034g \times 9.8ms^{-2}}{cm^2} \times \frac{1kg}{1000g} \times \frac{100cm \times 100cm}{1m \times 1m} \times \frac{1N}{kgms^{-2}} \times \frac{1Pa}{1Nm^{-2}}$

= 1.01332 x 10⁵ Pa

Q14. What is the SI unit of mass? How is it defined?

Ans.

The S.I unit of mass is kilogram (kg). A kilogram is equal to the mass of a platinum-iridium cylinder kept at the International Bureau of Weights and Measures at Service, France.

Q15. Match the following prefixes with their multiples:

	Prefixes	Multiples
(a)	femto	10
(b)	giga	10^{-15}
(c)	mega	10^{-6}
(d)	deca	10^{9}
(e)	micro	10^{6}

Ans.

	Prefixes	Multiples
(a)	femto	10^{-15}
(b)	giga	10^{9}
(c)	mega	10^{6}
(d)	deca	10
(e)	micro	10^{-6}

Q16. What do you mean by significant figures?

Ans.

Significant figures are the meaningful digits which are known with certainty. Significant figures indicate uncertainty in experimented value.

e.g.: The result of the experiment is 15.6 mL in that case 15 is certain and 6 is uncertain. The total significant figures are 3.

Therefore, "the total number of digits in a number with the last digit that shows the uncertainty of the result is known as significant figures."

Q17. A sample of drinking water was found to be severely contaminated with chloroform, CHCl₃, supposed to be carcinogenic in nature. The level of contamination was 15 ppm (by mass). (i) Express this in per cent by mass.

(ii) Determine the molality of chloroform in the water sample.

Ans.

(i) 1 ppm = 1 part out of 1 million parts.

Mass percent of 15 ppm chloroform in H₂O

 $=\frac{15}{10^6} \times 100$

= pprox 1.5 × 10^{-3} %

- (ii) $Molarity = \frac{15/119.5}{10^6 \times 10^{-3}} = 1.25 \times 10^{-4}$
- Q18. Express the following in the scientific notation: (i) 0.0048 (ii) 234,000 (iii) 8008 (iv) 500.0 (v) 6.0012

Ans.

- (i) 0.0048= 4.8 × 10⁻³
- (ii) $234,000 = 2.34 \times 10^5$
- (iii) 8008 = 8.008 x 10³
- (iv) $500.0 = 5.000 \times 10^2$
- (v) $6.0012 = 6.0012 \times 10^{\circ}$

Q19. How many significant figures are present in the following?

- (a) 0.0025
- (b) 208
- (c) 5005
- (d) 126,000

(e) 500.0

(f) 2.0034

Ans.

- (a) 0.0025: 2 significant numbers.
- (b) 208: 3 significant numbers.
- (c) 5005: 4 significant numbers.
- (d) 126,000:3 significant numbers.
- (e) 500.0: 4 significant numbers.
- (f) 2.0034: 5 significant numbers.

Q20. Round up the following upto three significant figures:

- (a) 34.216
- (b) 10.4107
- (c)0.04597
- (d)2808

Ans.

- (a) The number after round up is: 34.2
- (b) The number after round up is: 10.4
- (c)The number after round up is: 0.0460
- (d)The number after round up is: 2810

Q21. The following data are obtained when dinitrogen and dioxygen react together to form
different compounds:

	Mass of dioxygen	Mass of dinitrogen
<i>(i)</i>	16 g	14 g
(ii)	32 g	14 g
(iii)	32 g	28 g
(iv)	80 g	28 g

(a) Which law of chemical combination is obeyed by the above experimental data? Give its statement.

(b) Fill in the blanks in the following conversions:

(<i>i</i>) 1 km =	mm =	рт
(<i>ii</i>) 1 mg =	kg =	ng
(<i>iii</i>) 1 mL =	L =	dm ³

Ans.

(a)

Here if we fix the mass of dinitrogen at 14g, then the masses of dioxygen that will combine with the fixed mass of dinitrogen are 16g, 32g, 32g, and 80g.

The masses of dioxygen bear a whole number ratio of 1:2:2:5.

Hence, the given experimental data obeys the Law of Multiple Proportions.

(b)

i. $1km = 1km imes rac{1000m}{1km} imes rac{100cm}{1m} imes rac{10mm}{1cm} = \ 10^6mm$

$$1km=~1km imes~rac{1000m}{1km} imes~rac{1pm}{10^{-12}m}=~10^{^{15}}pm$$

ii.
$$1mg = \ 1mg imes \ rac{1g}{1000mg} imes \ rac{1kg}{1000g} = \ 10^{-6}kg$$

$$1mg=~1mg imes~rac{1g}{1000mg} imes~rac{1ng}{10^{-9}g}=~10^6ng$$

iii.
$$1mL=~1mL imes~rac{1L}{1000mL}=~10^{-3}L$$

 $1 \text{ mL} = 1 \text{ cm}^3$

 $= 1 cm^3 imes rac{1 dm imes 1 dm imes 1 dm}{10 cm imes 10 cm imes 10 cm} = 10^{-3} dm^3$

Q22. If the speed of light is 3.0×10^8 m s⁻¹, calculate the distance covered by light in 2.00 ns Ans.

Time taken = 2 ns = 2×10^{-9} s Now, Speed of light = 3×10^8 ms⁻¹ We know that, Distance = Speed x Time

So,

Distance travelled in 2 ns = speed of light x time taken

 $= (3 \times 10^8) (2 \times 10^{-9})$

= 6 x 10⁻¹ m

= 0.6 m

Q23. In a reaction $A + B_2 \rightarrow AB_2$ Identify the limiting reagent, if any, in the following reaction mixtures.

(i) 300 atoms of A + 200 molecules of B

(ii) 2 mol A + 3 mol B

(iii) 100 atoms of A + 100 molecules of B

(*iv*) 5 mol A + 2.5 mol B

(v) 2.5 mol A + 5 mol B

Ans.

Limiting reagent:

It determines the extent of a reaction. It is the first to get consumed during a reaction, thus causes the reaction to stop and limits the amount of product formed.

(i) 300 atoms of A + 200 molecules of B

1 atom of A reacts with 1 molecule of B. Similarly, 200 atoms of A reacts with 200 molecules of B, so 100 atoms of A are unused. Hence, B is the limiting reagent.

(ii) 2 mol A + 3 mol B

1 mole of A reacts with 1 mole of B. Similarly, 2 moles of A reacts with 2 moles of B, so 1 mole of B is unused. Hence, A is the limiting reagent.

(iii) 100 atoms of A + 100 molecules of Y

1 atom of A reacts with 1 molecule of Y. Similarly, 100 atoms of A reacts with 100 molecules of Y. Hence, it is a stoichiometric mixture where there is no limiting reagent.

(iv) 5 mol A + 2.5 mol B

1 mole of A reacts with 1 mole of B. Similarly 2.5 moles of A reacts with 2.5 moles of B, so 2.5 moles of A is unused. Hence, B is the limiting reagent.

(v) 2.5 mol A + 5 mol B

1 mole of A reacts with 1 mole of B. Similarly, 2.5 moles of A reacts with 2.5 moles of B, so 2.5 moles of B is unused. Hence, A is the limiting reagent.

Q24. Dinitrogen and dihydrogen react with each other to produce ammonia according to the following chemical equation:

 $N_{2}\left(g
ight)$ + $H_{2}\left(g
ight)$ ightarrow 2 $NH_{3}\left(g
ight)$

(i) Calculate the mass of NH_3 produced if 2 x 10³ g N₂ reacts with 1 x 10³ g of H_2 ?

(ii) Will any of the two reactants remain unreacted?

(iii) If yes, which one and what would be its mass.

Ans.

(i) 1 mol of N_2 i.e., 28 g reacts with 3 moles of H_2 i.e., 6 g of H_2

 \therefore 2000 g of N₂ will react with H₂ = $rac{6}{28} imes \ 200g = \ 428.6g$

Thus, N_2 is the limiting reagent while H_2 is the excess reagent

2 mol of N_2 i.e., 28 g of N_2 produces $NH_3 = 2$ mol

= 34 g

Therefore, 2000 g will produces NH₃ = $\frac{34}{28} \times 2000g$

= 2428.57 g

(ii) H₂ will remain unreacted

(iii) Mass left unreacted = 1000g - 428.6g = 571.4g

Q25. How are 0.50 mol Na₂CO₃ and 0.50 M Na₂CO₃ different?

Ans.

Molar mass of Na₂CO₃: = $(2 \times 23) + 12 + (3 \times 16)$ = 106 g mol⁻¹

1 mole of Na_2CO_3 means 106 g of Na_2CO_3 Therefore, 0.5 mol of Na_2CO_3

 $= \frac{106 g}{1 mol} \times 0.5 mol Na_2 CO_3$

= 53 g of Na_2CO_3 0.5 M of Na_2CO_3 = 0.5 mol/L Na_2CO_3 Hence, 0.5 mol of Na_2CO_3 is in 1 L of water or 53 g of Na_2CO_3 is in 1 L of water.

Q26. If 10 volumes of dihydrogen gas reacts with five volumes of dioxygen gas, how many volumes of water vapour would be produced?

Ans.

Reaction:

```
2H_2\left(g
ight) \ + \ O_2\left(g
ight) \ 	o \ 2H_2O\left(g
ight)
```

2 volumes of dihydrogen react with 1 volume of dioxygen to produce two volumes of water vapour.

Hence, 10 volumes of dihydrogen will react with five volumes of dioxygen to produce 10 volumes of water vapour.

Q27. Convert the following into basic units:

(i) 28.7 pm (ii) 15.15 pm (iii) 25365 mg Ans. (i) 28.7 pm $1 \text{ pm} = 10^{-12} \text{ m}$ 28.7 pm = 28.7 x 10⁻¹² m = 2.87 x 10⁻¹¹ m (ii) 15.15 pm $1 \text{ pm} = 10^{-12} \text{ m}$ $15.15 \text{ pm} = 15.15 \times 10^{-12} \text{ m}$ = 1.515 × 10⁻¹¹ m (iii) 25365 mg $1 \text{ mg} = 10^{-3} \text{ g}$ $1 \text{ mg} = 10^{-6} \text{ kg}$ 25365 mg = 25365 x 10⁻⁶ kg $25365 \text{ mg} = 2.5365 \times 10^{-2} \text{ kg}$

Q28. Which one of the following will have the largest number of atoms?

(i) 1 g Au (s)
(ii) 1 g Na (s)
(iii) 1 g Li (s)
(iv) 1 g of Cl₂ (g)
Ans.
(i) 1 g of Au (s)
= 1/197 mol of Au (s)

= $\frac{6.022\,\times\,10^{23}}{197}\,$ atoms of Au (s)

= 3.06 x 10²¹ atoms of Au (s)

(ii) 1 g of Na (s)

= $\frac{1}{23}$ mol of Na (s)

- = $\frac{6.022 \times 10^{23}}{23}$ atoms of Na (s)
- = 0.262×10^{23} atoms of Na (s) = 26.2×10^{21} atoms of Na (s)

(iii) 1 g of Li (s)

= $\frac{1}{7}$ mol of Li (s)

= $\frac{6.022 \times 10^{23}}{7}$ atoms of Li (s)

- = 0.86 x 10²³ atoms of Li (s)
- = 86.0 x 10²¹ atoms of Li (s)

(iv)1 g of Cl_2 (g)

= $\frac{1}{71}$ mol of Cl_2 (g)

(Molar mass of Cl_2 molecule = 35.5 × 2 = 71 g mol⁻¹)

=
$$rac{6.022 imes10^{23}}{71}$$
 atoms of Cl_2 (g)

- = 0.0848 x 10²³ atoms of Cl₂ (g)
- = 8.48×10^{21} atoms of Cl₂ (g)

Therefore, 1 g of Li (s) will have the largest no. of atoms.

Q29. Calculate the molarity of a solution of ethanol in water, in which the mole fraction of ethanol is 0.040 (assume the density of water to be one).

Ans.

Mole fraction of C_2H_5OH

$$0.040 = \frac{n_{C_2H_5OH}}{n_{C_2H_5OH} + n_{H_2O}} --(1)$$

No. of moles present in 1 L water:

$$n_{H_2O} = rac{1000 \ g}{18 \ g \ mol^{-1}} \ n_{H_2O}$$
 = 55.55 mol

Substituting the value of nH₂O in eqn (1),

$$\frac{n_{C_2H_5OH}}{n_{C_2H_5OH} + 55.55} = 0.040$$

$$n_{C_2H_5OH} = 0.040 n_{C_2H_5OH} + (0.040)(55.55)$$

 $0.96 n_{C_2H_5OH} = 2.222 \text{ mol}$

 $n_{C_2H_5OH} = \frac{2.222}{0.96} \ mol \ n_{C_2H_5OH} = 2.314 \ mol$

Therefore, molarity of solution

$$=\frac{2.314 \ mol}{1 \ L}$$

= 2.314 M

Q30. What will be the mass of one ¹²C atom in g?

Ans.

1 mole of carbon atoms = 6.023 x 10²³ atoms of carbon

= 12 g of carbon

Therefore, mass of 1 atom of ¹²C

 $= \frac{12 g}{6.022 \times 10^{23}}$

= 1.993 x 10⁻²³ g

Q31. How many significant figures should be present in the answer of the following calculations?

(i) $\frac{0.02856 \times 298.15 \times 0.112}{0.5785}$

(ii) 5 × 5.364

 $\textit{(iii)} \ 0.0125 + 0.7864 + 0.0215$

Ans.

(i) $\frac{0.02856 \times 298.15 \times 0.112}{0.5785}$

Least precise number = 0.112

Therefore, no. of significant numbers in the answer

```
= No. of significant numbers in 0.112
```

= 3

(ii) 5 × 5.364

Least precise number = 5.364

Therefore, no. of significant numbers in the answer

= No. of significant numbers in 5.364

= 4

(iii) 0.0125 + 0.7864 + 0.0215

As the least no. of decimal place in each term is 4. Hence, the no. of significant numbers in the answer is also 4.

Q32. Use the data given in the following table to calculate the molar mass of naturally occurring argon isotopes:

Isotope	Molar mass	Abundance
^{36}Ar	35.96755 g mol ⁻¹	0.337 %
^{38}Ar	37.96272 g mol ⁻¹	0.063 %
^{40}Ar	39.9624 g mol ⁻¹	99.600 %

Ans.

Molar mass of Argon:

= [0.121 + 0.024 + 39.802] g mol⁻¹ = 39.947 g mol⁻¹

Q33. Calculate the number of atoms in each of the following

(i) 52 moles of Ar

(ii) 52 u of He

(iii) 52 g of He

Ans.

(i) 52 moles of Ar

1 mole of Ar = 6.023 x 10^{23} atoms of Ar

Therefore, 52 moles of Ar = 52 x 6.023 x 10^{23} atoms of Ar

 $= 3.131 \times 10^{25}$ atoms of Ar

(ii) 52 u of He

1 atom of He = 4 u of He

OR

4 u of He = 1 atom of He

1 u of He = $\frac{1}{4}$ atom of He

52 u of He = $\frac{52}{4}$ atom of He

= 13 atoms of He

(iii) 52 g of He

4 g of He = 6.023×10^{23} atoms of He

52 g of He = $~\frac{6.023\,\times\,10^{23}\,\times\,52}{4}~$ atoms of He

= 7.829 x 10²⁴ atoms of He

Q34. A welding fuel gas contains carbon and hydrogen only. Burning a small sample of it in oxygen gives 3.38 g carbon dioxide, 0.690 g of water and no other products. A volume of 10.0 L (measured at STP) of this welding gas is found to weigh 11.6 g. Find:

(i) Empirical formula

(ii) Molar mass of the gas, and

(iii) Molecular formula

Ans.

(i) Empirical formula

1 mole of CO₂ contains 12 g of carbon

Therefore, 3.38 g of CO₂ will contain carbon

=
$$\frac{12 g}{44 g}$$
 × 3.38 g

= 0.9218 g

18 g of water contains 2 g of hydrogen

Therefore, 0.690 g of water will contain hydrogen

$$= \frac{2 g}{18 g} \times 0.690$$

As hydrogen and carbon are the only elements of the compound. Now, the total mass is:

= 0.9217 g + 0.0767 g = 0.9984 g

Therefore, % of C in the compound

$$= \frac{0.9217 \ g}{0.9984 \ g} \times 100$$

% of H in the compound

=
$$\frac{0.0767 \ g}{0.9984 \ g} \ imes \ 100$$

= 7.68 %

Moles of C in the compound,

$$= \frac{92.32}{12.00}$$

Moles of H in the compound,

$$=\frac{7.68}{1}$$

= 7.68

Therefore, the ratio of carbon to hydrogen is,

7.69: 7.68

1: 1

Therefore, the empirical formula is CH.

(ii) Molar mass of the gas

Weight of 10 L of gas at STP = 11.6 g

Therefore, weight of 22.4 L of gas at STP

=
$$\frac{11.6 \ g}{10 \ L}$$
 × 22.4 L

= 25.984 g

$$pprox$$
 26 g

(iii) Molecular formula

Empirical formula mass:

CH = 12 + 1

= 13 g

 $n = \frac{Molar \; mass \; of \; gas}{Empirical \; formula \; mass \; of \; gas}$

 $= \frac{26 g}{13 g}$

= 2

Therefore, molecular formula = $2 \times CH = C_2H_2$.

Q35. Calcium carbonate reacts with aqueous HCl to give $CaCl_2$ and CO_2 according to the reaction, $CaCO_3$ (s) + 2 HCl (aq) $\rightarrow CaCl_2(aq) + CO_2$ (g) + H₂O(l)

What mass of CaCO₃ is required to react completely with 25 mL of 0.75 M HCI?

Ans.

0.75 M of HCI

≡ 0.75 mol of HCI are present in 1 L of water

 \equiv [(0.75 mol) × (36.5 g mol⁻¹)] HCl is present in 1 L of water

≡ 27.375 g of HCl is present in 1 L of water

Thus, 1000 mL of solution contains 27.375 g of HCI

Therefore, amt of HCI present in 25 mL of solution

=
$$\frac{27.375 \ g}{1000 \ mL}$$
 $imes$ 25 mL

= 0.6844 g

Given chemical reaction,

 $CaCO_3\left(s
ight) + 2 \ HCl\left(aq
ight) \
ightarrow \ CaCl_2\left(aq
ight) \ + \ CO_2\left(g
ight) \ + \ H_2O\left(l
ight)$

2 mol of HCl ($2 \times 36.5 = 73$ g) react with 1 mol of CaCO₃ (100 g)

Therefore, amt of CaCO3 that will react with 0.6844 g

=
$$rac{100}{73}$$
 $imes$ 0.6844 g

= 0.9375 g

Q36. Chlorine is prepared in the laboratory by treating manganese dioxide (MnO₂) with aqueous hydrochloric acid according to the reaction:

KADO **HUB**

4 HCl (aq) + MnO₂(s) \rightarrow 2H₂O (l) + MnCl₂(aq) + Cl₂ (g)

How many grams of HCl react with 5.0 g of manganese dioxide?

Ans.

1 mole of $MnO_2 = 55 + 2 \times 16 = 87 \text{ g}$

4 mole of HCl = $4 \times 36.5 = 146$ g

1 mole of MnO₂ reacts with 4 mol of HCl

Hence,

5 g of MnO₂ will react with:

$$= \frac{146 g}{87 g} \times 5 g$$
 HCl

= 8.4 g HCl

Therefore, 8.4 g of HCI will react with 5 g of MnO_2 .